Sub-wavelength infrared imaging of lipids

نویسندگان

  • Fiona Yarrow
  • Eamonn Kennedy
  • Frederic Salaun
  • James H. Rice
چکیده

Infrared absorption spectroscopy of lipid layers was performed by combining optics and scanning probe microscopy. This experimental approach enables sub-diffraction IR imaging with a spatial resolution on the nanometer scale of 1, 2-dioleoyl-sn-glycero-3-phosphocholine lipid layers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infrared imaging of sub-retinal structures in the human ocular fundus

The interaction of infrared light with the human ocular fundus, particularly sub-retinal structures, was studied in vivo. Visible and infra-red wavelengths and a scanning laser ophthalmoscope were used to acquire digital images of the human fundus. The contrast and reflectance of selected retinal and sub-retinal features were computed for a series of wavelengths or modes of imaging. Near infrar...

متن کامل

Photoacoustic imaging of lipid rich plaques in human aorta

Recently it has been shown that multiwavelength photoacoustic imaging has the potential to discriminate between normal and atheromatous areas of arterial tissue when operating in the 740-1300nm wavelength range. At this wavelength range the absorption spectrum of lipids and normal arterial tissue are significantly different allowing discrimination between one another. Also, this wavelength rang...

متن کامل

Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties.

Extending the wavelength range of spatial frequency domain imaging (SFDI) into the short-wave infrared (SWIR) has the potential to provide enhanced sensitivity to chromophores such as water and lipids that have prominent absorption features in the SWIR region. Here, we present, for the first time, a method combining SFDI with unstructured (zero spatial frequency) illumination to extract tissue ...

متن کامل

Polariton-enhanced near field lithography and imaging with infrared light

A novel approach to making a material with negative index of refraction in the infrared frequency band is described. Materials with negative dielectric permittivity ! are utilized in this approach. Those could be either plasmonic (metals) or polaritonic (semiconductors) in nature. A sub-wavelength plasmonic crystal (SPC), with the period much smaller than the wavelength of light, consisting of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010